Table	1.	Fraction	al	atomic	coordinat	es	and	equivalent
		isotropic	di	splacem	ent param	ete	rs (Å	$\binom{2}{2}$

$$B_{\rm eq} = (8\pi^2/3)\sum_i\sum_j U_{ij}a_i^*a_i^*\mathbf{a}_i.\mathbf{a}_j.$$

	x	у	z	Bea
C1	0.2177 (6)	0.1990 (2)	0.9675 (4)	4.5 (1)
C2	0.1581 (5)	0.1276 (2)	0.8919 (3)	3.3 (1)
C3	-0.0271(5)	0.1068 (2)	0.9404 (3)	3.5 (1)
O3	-0.1219 (4)	0.0500(1)	0.9115 (2)	4.8 (1)
C4	-0.0628(6)	0.1701 (2)	1.0257 (4)	4.8(1)
C5	0.0699 (6)	0.1509 (3)	1.1339 (4)	5.4 (1)
C6	0.2610 (6)	0.1701 (3)	1.0925 (4)	5.6(1)
C7	0.0330 (6)	0.2407 (2)	0.9750 (5)	5.2 (1)
01′	0.1074 (3)	0.1548(1)	0.7725 (2)	4.1 (1)
N2'	0.2302 (4)	0.1220 (2)	0.6976 (2)	3.6(1)
C3′	0.3350 (4)	0.0724 (2)	0.7535 (3)	3.0(1)
C4′	0.2960 (6)	0.0618 (2)	0.8772 (3)	4.3 (1)
C1″	0.4862 (4)	0.0354 (2)	0.6960 (3)	3.2 (1)
C2″	0.4858 (5)	-0.0446 (2)	0.6664 (3)	3.9 (1)
C3″	0.6290 (6)	-0.0791 (2)	0.6126 (4)	5.0(1)
C4″	0.7786 (6)	-0.0334(3)	0.5892 (4)	5.2(1)
C5″	0.7853 (5)	0.0456 (3)	0.6174 (4)	4.8(1)
C6″	0.6406 (4)	0.0788 (2)	0.6691 (3)	3.6(1)
Cl2″	0.2979(1)	-0.1021 (1)	0.6950(1)	5.90 (3
C16''	0.6527(1)	0.1790(1)	0.7034(1)	5 84 (3

Table 2. Selected geometric parameters (Å, °)

C1-C2	1.532 (5)	N2'-C3'	1.272 (4)
C1-C6	1.534 (6)	C3'-C4'	1.494 (5)
C1—C7	1.524 (6)	C3'—C1''	1.471 (5)
C2C4'	1.516 (5)	C1‴—C2″	1.396 (5)
C2-C3	1.541 (5)	C1''-C6''	1.397 (4)
C3-C4	1.494 (5)	C2''-C3''	1,385 (6)
C3—O3	1.212 (4)	C2''-Cl2''	1,730 (4)
C4C5	1.549 (6)	C3''-C4''	1.379 (6)
C4C7	1.524 (6)	C4''—C5''	1.375 (7)
C5-C6	1.540 (7)	C5''—C6''	1.373 (5)
01'—N2'	1.409 (4)	C6''—C16''	1.741 (4)
01′—C2	1.473 (4)		
C6C1C7	101.8 (3)	C2-01'-N2'	109.5 (2)
C2-C1-C6	108.2 (3)	O1'-N2'-C3'	109.2 (2)
C2-C1-C7	100.9 (3)	N2'-C3'-C4'	114.4 (2)
C1-C2-C3	100.7 (3)	N2'-C3'-C1''	119.2 (2)
C1-C2-01'	109.0 (2)	C4'—C3'—C1''	126.3 (3)
C1-C2-C4'	119.0 (3)	C2—C4′—C3′	101.5 (3)
C3—C2—O1′	104.9 (2)	C3'—C1''—C2''	122.5 (2)
C3—C2—C4′	118.6 (3)	C3'—C1''—C6''	121.4 (2)
01'—C2—C4'	103.8 (2)	C2''-C1''-C6''	116.1 (2)
O3—C3—C4	128.6 (3)	C1''-C2''-C3''	122.2 (3)
C2-C3-O3	125.0 (3)	C1''-C2''-Cl2''	118.9 (2)
C2—C3—C4	106.4 (3)	C3''_C2''_Cl2''	118.9 (3)
C3-C4-C5	104.7 (3)	C2''-C3''-C4''	119.1 (3)
C3-C4-C7	101.3 (3)	C3''—C4''—C5''	120.7 (3)
C5-C4-C7	101.7 (3)	C4''—C5''—C6''	119.2 (3)
C4C5C6	102.7 (3)	C1''_C6''_C5''	122.7 (3)
C1-C6-C5	104.0 (3)	C1''-C6''-C16''	119.1 (2)
C1C7C4	95.3 (3)	C5''—C6''—C16''	118.1 (3)
C1C2C3C4	5.5 (4)	C7-C1-C2-C3	-39.1 (4)
C2_C3_C4_C5	-75.5 (4)	C1_C2_C3_O3	-175.2 (3)
C3_C4_C5_C6	70.1 (4)	01'-C2-C3O3	71.7 (4)
C4-C5-C6-C1	0.8 (4)	C4′—C2—C1—C6	-64.0 (4)
C5-C6-C1-C2	-72.1 (4)	C1—C7—C4—C5	55.0 (4)
C6-C1-C2-C3	67.4 (4)	C7—C4—C5—C6	-35.1 (4)
C2-C3-C4-C7	29.9 (4)	C5-C6-C1-C7	33.7 (4)
C3-C4-C7-C1	-52.8 (4)	C6C1C7C4	-54.4 (4)
C4C7C1C2	57.1 (4)	C4'—C3'—C1''—C2''	73.3 (5)

Data collection: AFC Software (Rigaku Corporation, 1974). Cell refinement: AFC Software. Data reduction: AFC Software. Program(s) used to solve structure: SHELX86 (Sheldrick, 1985). Program(s) used to refine structure: SHELX76 (Sheldrick, 1976). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: *Xtal*3.0 (Hall & Stewart, 1990). Calculations were performed on a VAX 8800 computer.

Lists of structure factors, anisotropic displacement parameters and H-atom coordinates have been deposited with the IUCr (Reference: C940462–HR1029). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Altona, C., Geise, H. J. & Romers, C. (1968). *Tetrahedron*, 24, 13–32.
 Bordeaux, D., Gagnaire, G. & Lajzerowicz, J. (1983). *Acta Cryst.* C39, 466–470.
- Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structure, Vol. 1, pp. 18–199. New York: Plenum Press.
- Hall, S. R. & Stewart, J. M. (1990). Editors. Xtal3.0 Reference Manual. Univs. of Western Australia, Australia, and Maryland, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kelly-Basetti, B. M., Mackay, M. F., Pereira, S. M., Savage, G. P. & Simpson, G. W. (1994). *Heterocycles*, 37, 529-539.
- Pereira, S. M., Savage, G. P., Simpson, G. W., Greenwood, R. J. & Mackay, M. F. (1993). Aust. J. Chem. 46, 1401–1412.
- Rigaku Corporation (1974). AFC Software. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1994). C50, 1774-1777

The Molecular Structure of Caroxazone, a Reversible Monoamine Oxidase Inhibitor

JOHAN WOUTERS, GUY EVRARD AND FRANCOIS DURANT

Laboratoire Chimie Moleculaire Structurale, Facultes N.-D. de la Paix, 61 Rue de Bruxelles,

B-5000 Namur, Belgium

(Received 29 November 1993; accepted 2 February 1994)

Abstract

Caroxazone, 2-oxo-2H-1,3-benzoxazine-3(4H)-acetamide (I), $C_{10}H_{10}N_2O_3$, is a potent monoamine oxidase (MAO) inhibitor. The two molecules in the asymmetric unit have different conformations of the acetamide chain. The oxazine ring is not very distorted and the distances between the different atoms of the ring indicate electronic delocalization within this moiety. Crystal cohesion is assumed to be mainly due to intermolecular hydrogen bonding between the amidic N and carbonyl O atoms.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved

Comment

As part of our study of monoamine oxidase (MAO) inhibitors (Moureau *et al.*, 1992; Wouters *et al.*, 1993; Wouters, Perpete, Norberg, Evrard & Durant, 1994), we report here the X-ray crystal structure of caroxazone, (I), a clinically active antidepressant drug (Moretti, Caccia, Carpentier & Carfagna, 1984). Crystal structure analysis of this compound has been undertaken in order to ascertain the conformation of the acetamide side chain with respect to the oxobenzoxazine moiety of the molecule; furthermore, the forces responsible for the crystal packing cohesion were examined in order to discover which functional groups of the caroxazone molecule are likely to interact with the MAO active site.

The two molecules of caroxazone in the asymmetric unit (numbered 100 and 200) adopt significantly different conformations. For both molecules, an 'enantiomeric' conformation is produced by symmetry (*a* plane) leading to four stable conformations for the acetamide side chain of caroxazone. Implications of these steric requirements, with respect to the active site of MAO, will be discussed elsewhere.

Bond lengths and valence angles are compared in Fig. 1 and reported in Table 2. The main torsion angles are presented in Table 2. The oxazine ring is not very distorted (Table 2). The main deviations from the mean plane through atoms C02, N03, C08, C09, C14 and O15 are observed in the 100 molecule for the atoms N03 and C08, with out-of-plane distances of -0.111(2) and 0.106(2)Å, respectively. In both molecules, the atom N03 retains its sp^2 character as underlined by its small deviation from the mean plane defined by C02, C04 and C08, with distances of -0.120 and -0.014 Å in the 100 and 200 molecules, respectively, and by the sum of the valence angles at this N atom [357.8 (2) and $360.0(2)^{\circ}$ for the 100 and 200 molecules, respectively]. The C02–O15, C14–O15 and O01–C02 bond lengths (Fig. 1) fall between standard single- and double-bond lengths and indicate electronic delocalization within the oxobenzoxazine ring.

Crystal cohesion (Fig. 2) is assumed to be due to intermolecular hydrogen bonding between the amidic N atom (N06) and the carbonyl O atoms (O01 and O07) of two other molecules (Table 3). As a consequence, these functional groups (*i.e.* the amide of the acetamide chain and the carbonyl in the benzoxazine ring) are likely to anchor caroxazone to specific amino acids in the binding site of the enzyme.

Fig. 1. Comparison of (a) the bond lengths (Å) and (b) the valence angles (°) of the two molecules of caroxazone; the atom labelling of the non-H atoms is included. The data for molecule 100 are shown in plain text and those for molecule 200 are shown in italic. The maximum e.s.d.'s are 0.006 Å and 0.3° for bonds and angles, respectively.

Fig. 2. Stereoview of the molecular conformation and crystal packing of caroxazone. Hydrogen bonds are represented by dotted lines.

1776

$C_{10}H_{10}N_2O_3$

Experi	imental			C212 C213	0.1128 (5) 0.0804 (4)	0.63274 (0.68783 ((15) (16)	0.5543 (3) 0.4904 (3)	0.0623 (11) 0.0540 (9)
Crystal	data			C214	0.1323 (3)	0.74995	13)	0.5283 (2)	0.0431 (7)
$C_{10}H_{10}$	N_2O_3	Cu $K\alpha$ radiation						0	
$M_r = 20$	J0.20	$\lambda = 1.34176$ A	- 25	Т	able 2. Sele	cted geome	tric p	arameters (A	., °)
Ortnorn	iombic	Cell parameters from	m 23	0101-0	102	1,216(3)	0201-	-C202	1.213 (4)
$Pca2_1$	• • • • • •	reflections		0107—C	2105	1.227 (3)	0207-	-C205	1.228 (3)
a = 8.0	934 (10) A	$\theta = 14-28^{\circ}$		0115—C	102	1.357 (3)	O215-	-C202	1.346 (4)
b = 19.9	998 (3) Å	$\mu = 0.897 \text{ mm}^{-1}$		0115—C	2114	1.394 (3)	O215-	C214	1.391 (3)
c = 11.9	926 (2) Å	T = 293 (2) K		N103—C	2102	1.350 (3)	N203-	C202	1.353 (4)
V = 193	$30.2(5) Å^3$	Prism		N103—C	2104	1.451 (4)	N203-	C204	1.438 (4)
7 = 8		$0.31 \times 0.22 \times 0.05$	mm	N103—C	2108	1.454 (3)	N203-	-C208	1.439 (4)
D = 1	410 Mg m^{-3}			N106-C	105	1.313(3)	N206-	-0205	1.310(4)
$D_x = 1.$	419 Wig III	Colouriess		C104-C	105	1.525 (4)	C204-	-C205	1.525(3) 1.485(4)
				C100-C	110	1.490 (4)	C200-	-C210	1.485(4)
Data co	ollection			C109-C	2114	1.379 (3)	C209-	-C214	1.372 (3)
Enraf-N	Nonius CAD-4	$R_{\rm int} = 0.0191$		C110-C	2111	1.384 (5)	C210-	-C211	1.375 (4)
diffra	octometer	$\theta_{\rm max} = 71.89^{\circ}$		С111—С	2112	1.370 (6)	C211-	-C212	1.368 (5)
Absorpt	tion correction:	$h = 0 \rightarrow 0$		C112—C	2113	1.388 (5)	C212-	C213	1.365 (5)
nosoip	non concention.	$k = 24 \rightarrow 21$		С113—С	2114	1.379 (4)	C213-	C214	1.387 (4)
2200		$k = -24 \rightarrow 21$		C102C	0115—C114	121.3 (2)	C202-		121.7 (2)
3289 m	leasured renections	$l = 0 \rightarrow 14$		C102—N	1103—C104	116.4 (2)	C202-	-N203-C204	119.4 (3)
1996 in	dependent reflectio	ns 3 standard reflection	ns	C102—N	1103—C108	124.4 (2)	C202-	-N203-C208	125.6 (2)
1747 ot	bserved reflections	frequency: 60 mi	n	C104—N	V103—C108	117.0 (2)	C204-	–N203–C208	115.0 (3)
[I >	$2\sigma(I)$]	intensity variation	n: none	0101-0	2102-0115	117.6(2)	0201-	-C202-0215	117.6(3)
				0101-0	2102—N103	123.7(2) 1186(2)	0201-	-C202-N203	123.9(3) 1184(3)
Refinem	nent			N103-C	C104—C105	110.0(2) 112.7(2)	N203-	-C204-C205	112.2 (3)
n .				0107-0	C105—N106	124.4 (2)	0207-	-C205-N206	124.4 (3)
Kennen	nent on F	$(\Delta/\sigma)_{\rm max} = 1.45/$	3	0107-0	C105—C104	121.0 (2)	O207-	-C205-C204	120.4 (3)
$R[F^{*}] >$	$2\sigma(F^2)$] = 0.0357	$\Delta \rho_{\rm max} = 0.12 \ {\rm e \ A}^-$	2	N106-C	C105—C104	114.6 (2)	N206-		115.0(2)
$wR(F^2)$	= 0.0852	$\Delta \rho_{\min} = -0.15 \text{ e Å}$		N103—C	C108—C109	111.4 (2)	N203-	C208C209	112.7 (3)
S = 0.9	03	Atomic scattering fa	actors	C108—C	C109—C110	122.0 (2)	C208-		122.6 (3)
1994 re	eflections	from Internationa	al Tables	C108-C	C109—C114	119.8 (2)	C208-		119.7 (2)
331 par	rameters	for Crystallogram	hv (1992.		C109C114	118.2 (3)	C210-	$-C_{209}$ $-C_{214}$	117.0(2) 120.7(3)
w = 1/[$\sigma^2(E^2) + (0.0636P)$	2 Vol C Tables 4	2.6.8 and	C110-C	111 - C112	1207(3)	C210-	-C210-C211	120.3 (3)
1/1 - 1/1	0 0 3 3 P	6114	2.0.0 4114	C111-C	C112—C113	120.3 (3)	C211-	-C212-C213	120.3 (3)
т. 	$D = (E^2 + 2E^2)/2$	0.1.1.4)		C112-C	C113—C114	118.4 (3)	C212-	-C213-C214	118.9 (3)
wher	$e r = (r_o + 2r_c)/2$	0		0115—0	C114—C109	121.0 (2)	O215-		121.2 (2)
				0115—0	C114—C113	116.5 (2)	O215-	-C214-C213	116.7 (2)
Table	1. Fractional atc	omic coordinates and e	quivalent	C109—C	C114—C113	122.5 (3)	C209-	C214C213	122.1 (3)
isotropic displacement parameters $(Å^2)$				C114-0115-	-C102-O101		177.6 (2)		
				C114-0115-	-C102-N103		-0.7 (3)		
$U_{\rm eq} = (1/3) \sum_i \sum_i U_{ii} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_i.$				C102-0115-	C114C109		8.8 (3)		
					C102-0115-	C114C113		-172.3 (2)	
0101	<i>x</i>	y z	U_{eq}		C104—N103-	-C102-O101		3.1 (4)	
0101	0.0030 (3) 0.	43034 (0) 0.5469 (2)	0.0600 (7)		C108—N103-			103.8 (3)	
010/	0.0030(2) 0.003(2) 0.00	(43034(7)) (2) (2)	0.0302 (0)		C104—IN103-	-0102-0115		-1/0.7(2)	

0.0390(3)	0.45533 (10)	0.5469(2)	0.0600(7)
0.0030 (2)	0.43034 (9)	0.8109 (2)	0.0502 (6)
0.0484 (2)	0.34889 (9)	0.50010(17)	0.0526 (6)
0.2126 (2)	0.38310 (10)	0.64972 (18)	0.0415 (6)
0.1785 (3)	0.51049 (12)	0.8679 (2)	0.0516 (8)
0.1055 (3)	0.39867 (13)	0.5670(2)	0.0458 (8)
0.2671 (3)	0.43790 (12)	0.7203 (3)	0.0453 (8)
0.1362 (3)	0.45942 (11)	0.8049 (2)	0.0379 (7)
0.2411 (4)	0.31573 (12)	0.6912 (2)	0.0460 (8)
0.1925 (3)	0.26450 (13)	0.6067 (2)	0.0439 (8)
0.2406 (5)	0.19787 (13)	0.6161 (3)	0.0591 (10)
0.1927 (5)	0.15205 (16)	0.5354 (4)	0.0726 (13)
0.0968 (5)	0.17135 (18)	0.4464 (3)	0.0729 (11)
0.0503 (4)	0.23774 (17)	0.4342 (3)	0.0593 (10)
0.0997 (3)	0.28295 (14)	0.5148 (2)	0.0446 (8)
0.0900 (3)	0.91217 (13)	0.4286 (3)	0.0853 (10)
-0.0244 (2)	0.93474 (9)	0.7253 (2)	0.0628 (7)
0.1022 (3)	0.80417 (10)	0.45814 (18)	0.0591 (7)
0.2082 (3)	0.87741 (10)	0.5906 (2)	0.0500 (7)
0.1426 (3)	1.02019 (13)	0.7729 (3)	0.0629 (10)
0.1313 (4)	0.86743 (14)	0.4913 (3)	0.0534 (9)
0.2345 (5)	0.94455 (14)	0.6299 (4)	0.0645 (10)
0.1060 (3)	0.96569 (12)	0.7162 (3)	0.0493 (8)
0.2637 (5)	0.82571 (14)	0.6656(3)	0.0550 (9)
0.2126 (3)	0.75786 (12)	0.6287 (2)	0.0418 (7)
0.2424 (4)	0.70097 (14)	0.6921 (3)	0.0556 (9)
0.1945 (4)	0.63901 (16)	0.6542 (3)	0.0660 (11)
	$\begin{array}{c} 0.0396 (3)\\ 0.0030 (2)\\ 0.0484 (2)\\ 0.2126 (2)\\ 0.1785 (3)\\ 0.1055 (3)\\ 0.2671 (3)\\ 0.2671 (3)\\ 0.2401 (4)\\ 0.1925 (3)\\ 0.2406 (5)\\ 0.1927 (5)\\ 0.1927 (5)\\ 0.0968 (5)\\ 0.0503 (4)\\ 0.0997 (3)\\ 0.0900 (3)\\ -0.0244 (2)\\ 0.1022 (3)\\ 0.2082 (3)\\ 0.1426 (3)\\ 0.1313 (4)\\ 0.2345 (5)\\ 0.1060 (3)\\ 0.2637 (5)\\ 0.2126 (3)\\ 0.2424 (4)\\ 0.1945 (4)\\ \end{array}$	$\begin{array}{ccccc} 0.0596 & (3) & 0.43533 & (10) \\ 0.0030 & (2) & 0.43034 & (9) \\ 0.0484 & (2) & 0.34889 & (9) \\ 0.2126 & (2) & 0.38310 & (10) \\ 0.1785 & (3) & 0.51049 & (12) \\ 0.1055 & (3) & 0.39867 & (13) \\ 0.2671 & (3) & 0.43790 & (12) \\ 0.1362 & (3) & 0.45942 & (11) \\ 0.2411 & (4) & 0.31573 & (12) \\ 0.1925 & (3) & 0.26450 & (13) \\ 0.2406 & (5) & 0.19787 & (13) \\ 0.1927 & (5) & 0.15205 & (16) \\ 0.0968 & (5) & 0.17135 & (18) \\ 0.0503 & (4) & 0.23774 & (17) \\ 0.0997 & (3) & 0.28295 & (14) \\ 0.0900 & (3) & 0.91217 & (13) \\ -0.0244 & (2) & 0.93474 & (9) \\ 0.1022 & (3) & 0.80417 & (10) \\ 0.2082 & (3) & 0.87741 & (10) \\ 0.2082 & (3) & 0.87741 & (10) \\ 0.2345 & (5) & 0.94455 & (14) \\ 0.1060 & (3) & 0.96569 & (12) \\ 0.2637 & (5) & 0.82571 & (14) \\ 0.2126 & (3) & 0.75786 & (12) \\ 0.2424 & (4) & 0.70097 & (14) \\ 0.1945 & (4) & 0.63901 & (16) \\ \end{array}$	$\begin{array}{ccccccc} 0.0396 (3) & 0.43533 (10) & 0.3469 (2) \\ 0.0030 (2) & 0.43034 (9) & 0.8109 (2) \\ 0.0484 (2) & 0.34889 (9) & 0.50010 (17) \\ 0.2126 (2) & 0.38310 (10) & 0.64972 (18) \\ 0.1785 (3) & 0.51049 (12) & 0.8679 (2) \\ 0.1055 (3) & 0.39867 (13) & 0.5670 (2) \\ 0.2671 (3) & 0.43790 (12) & 0.7203 (3) \\ 0.1362 (3) & 0.45942 (11) & 0.8049 (2) \\ 0.2411 (4) & 0.31573 (12) & 0.6912 (2) \\ 0.1925 (3) & 0.26450 (13) & 0.6067 (2) \\ 0.2406 (5) & 0.19787 (13) & 0.6161 (3) \\ 0.1927 (5) & 0.15205 (16) & 0.5354 (4) \\ 0.0968 (5) & 0.17135 (18) & 0.4464 (3) \\ 0.0900 (3) & 0.91217 (13) & 0.4286 (3) \\ -0.0244 (2) & 0.93474 (9) & 0.7253 (2) \\ 0.1022 (3) & 0.80417 (10) & 0.45814 (18) \\ 0.2082 (3) & 0.87741 (10) & 0.5906 (2) \\ 0.1313 (4) & 0.86743 (14) & 0.4913 (3) \\ 0.2335 (5) & 0.94255 (14) & 0.6299 (4) \\ 0.1060 (3) & 0.96569 (12) & 0.7162 (3) \\ 0.2637 (5) & 0.82571 (14) & 0.6627 (2) \\ 0.2424 (4) & 0.70097 (14) & 0.6921 (3) \\ 0.2945 (4) & 0.63901 (16) & 0.6542 (3) \\ \end{array}$

	0213-0214-02
C114—C113 122.5 (3)	C209C214C2
C114-0115-C102-0101	177.6 (2)
C114-0115-C102-N103	-0.7 (3)
C102-0115-C114-C109	8.8 (3)
C102-0115-C114-C113	-172.3 (2)
C104-N103-C102-0101	3.1 (4)
C108-N103-C102-O101	165.8 (3)
C104—N103—C102—O115	-178.7 (2)
C108—N103—C102—O115	-16.0(3)
C102-N103-C104-C105	76.0 (3)
C108-N103-C104-C105	-88.0 (3)
C104-N103-C108-C109	-175.2 (2)
C102-N103-C108-C109	22.2 (3)
N103-C104-C105-N106	-177.7 (2)
N103C104C105O107	1.9 (4)
N103-C108-C109-C110	165.7 (3)
N103-C108-C109-C114	-13.1 (3)
C108-C109-C110-C111	-179.9 (3)
C114-C109-C110-C111	-1.1 (5)
C108-C109-C114-O115	-0.8 (4)
C108-C109-C114-C113	-179.6 (3)
C110-C109-C114-O115	-179.6(3)
C110-C109-C114-C113	1.5 (4)
C109-C110-C111-C112	-0.6 (6)
C110-C111-C112-C113	1.9 (6)
C111—C112—C113—C114	-1.5 (5)
C112-C113-C114-0115	-179.1 (3)
C112-C113-C114-C109	-0.3 (5)
C214—O215—C202—O201	-174.4 (3)
C214-0215C202N203	7.2 (4)
C202-0215-C214-C209	-8.5 (4)
C202-0215-C214-C213	172.9 (3)
C204—N203—C202—O201	4.3 (5)

C208-N203-C202-O201	-177.9 (3)
C204—N203—C202—O215	-177.5 (3)
C208-N203-C202-O215	0.3 (5)
C202-N203-C204-C205	99.5 (4)
C208-N203-C204-C205	78.5 (4)
C204—N203—C208—C209	171.9 (3)
C202-N203-C208-C209	-5.9(5)
N203-C204-C205-N206	166.0 (3)
N203-C204-C205-O207	-17.6(5)
N203-C208-C209-C210	-175.4(3)
N203C208C209C214	4.5 (4)
C208-C209-C210-C211	-179.3 (3)
C214-C209-C210-C211	0.8 (4)
C208—C209—C214—O215	2.1 (4)
C208-C209-C214-C213	-179.3 (3)
C210—C209—C214—O215	-178.0(2)
C210-C209-C214-C213	0.6 (4)
C209—C210—C211—C212	-1.6(5)
C210—C211—C212—C213	1.1 (5)
C211—C212—C213—C214	0.3 (6)
C212—C213—C214—O215	177.5 (3)
C212-C213-C214-C209	-1.1 (5)

Table 3. Hydrogen-bonding geometry (Å, °)

$D - H \cdots A$	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	D — $H \cdot \cdot \cdot A$
N106H161····O107 ⁱ	2.104 (48)	166.4 (45)
N106H162· · ·O101 ⁱⁱ	2.162 (46)	167.0 (37)
N206H261····O207 ⁱⁱⁱ	2.032 (48)	166.2 (37)
N206H262···O201 ^{iv}	1.978 (44)	163.0 (35)
Symmetry codes: (i) $x + \frac{1}{2}$. 1 -	-v, z; (ii) - x, 1 - v, z + y	$\frac{1}{1}$: (iii) $x + \frac{1}{2}$, $2 - v_{1} z$

 $(iv) -x, 2 - y, z + \frac{1}{2}.$

The structure was solved using *SHELXS*86 (Sheldrick, 1990) and refined with *SHELXL*93 (Sheldrick, 1993). Most of the calculations were performed with the *SHELXL*93 package, as was the generation of the Crystallographic Information File (CIF) used for the submission of this paper.

JW thanks the National Fundation for Scientific Research (FNRS Belgium) for his Research Assistant position.

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: DU1075). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Moretti, A., Caccia, C., Carpentier, M. & Carfagna, N. (1984). Monoamine Oxidase and Disease, edited by K. Tipton, P. Dostert & M. Strolin Benedetti, pp. 537–546. London: Academic Press.
- Moureau, F., Wouters, J., Vercauteren, D. P., Evrard, G., Durant, F., Ducrey, F., Koenig, J. J. & Jarreau, F. X. (1992). Eur. J. Med. Chem. 27, 939-948.
- Sheldrick, G. M. (1990). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for Crystal Structure Determination. Univ. of Göttingen, Germany.
- Wouters, J., Moureau, F., Dory, M., Evrard, G., Durant, F., Ducrey, F., Koenig, J. J. & Jarreau, F. X. (1993). Trends in QSAR and Molecular Modelling 92, edited by C. Wermuth, pp. 291–293. Leiden: ESCOM.
- Wouters, J., Perpete, P., Norberg, B., Evrard, G. & Durant, F. (1994). Acta Cryst. C50, 97–100.

© 1994 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1994). C50, 1777-1779

3-[5-(2-Nitrophenyl)furfurylidene]-2,4-pentanedione

V. VRÁBEL

Department of Analytical Chemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia

J. Lokaj

Central Laboratory of Chemical Technics, Faculty of Chemical Technology, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia

J. Sivý

Department of Analytical Chemistry, Faculty of Pharmacy, Comenius University, 880 37 Bratislava, Slovakia

D. ILAVSKÝ AND A. BARTOVIČ

Department of Organic Chemistry, Faculty of Chemical Technology, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia

(Received 2 July 1993; accepted 25 November 1993)

Abstract

The title compound, $C_{16}H_{13}NO_5$, consists of monomeric units. The whole molecule was tested for planarity. Unlike the 3-nitrophenyl isomer [Lokaj, Vrábel, Sivý, Ilavský & Koreňová (1994). Acta Cryst. C**50**, 1312–1314], the fragment containing the O(1), C(1), C(2) and C(5) atoms, the furylidene ring and the attached nitrophenyl group are not in the same plane. The dihedral angle between the benzene and furan rings is 47.8°.

Comment

The conformation of furan derivatives with an R substituent at position 5 and a —CH=C R'_2 substituent at position 2 can be assumed on the basis of previously reported information (Kusá, Polynova, Poray-Koshits, Kováč & Végh, 1979; Kusá, Polynova, Poray-Koshits & Jurášek, 1979; Kusá, Polynova, Poray-Koshits & Kováč, 1979). The conformation depends on the type of R' substituent; electron-acceptor substituents form *trans* and